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We give the exact order of the dyadic entropy numbers of the identities from l~

to l~ where p < r. Weaker estimates can be found in [3,41. The crucial lemma is a
combinatorial result from [5]. Then we consider (dyadic) entropy numbers of iden­
tities between finite-dimensional symmetric Banach spaces. We obtain a simple
expression that gives the exact order up to some logarithmic factor. This allows us
to generalize a theorem due to B. Carl [I] about diagonal operators. It turns out
that the result still holds under much weaker assumptions on the spaces. More
precisely, the assumptions are not so much concerned with the spaces themselves
but (what seems to be intuitively clear) with the relation between the spaces.

1. PRELIMINARIES

A basis jed~ I of a Banach space E is called symmetric if we have for all
permutations n, all sings sp i E N, and all ai E IR,

The biorthogonal functionals are denoted by {et }~ I' We put

A fact that is used frequently is

BE is the unit ball of the space E. We consider the natural identity between
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(finite-dimensional) symmetric (spaces with a symmetric basis) spaces given
by

where {ed?=1 and {f}?=1 are symmetric bases of E and F, respectively. If
E = I~ and F = I~ we might also write idp,q'

The kth entropy number of an operator S E L(E, F) is

ekeS) = inf )a I S(BE ) S; i~] {Xi +aBF }, Xi E F(

and the kth dyadic entropy number is

The norm of the Lorentz space 15 ,1, 0 < S, t ~ 00, is given by

Also, we are concerned with the operator ideal Y'~~:(E, F) equipped with a
quasi-norm that is equivalent to [4]

The measure on IR n that we use throughout this paper is the usual Lebesgue
measure. So, we have for the unit balls Boo of Ie;; and B I of I~ that
vol(B"J = 2n and vol(B]) = 2n (1/n!).

ENTROPY NUMBERS FOR SYMMETRIC BANACH SPACES

THEOREM 1. Let idp,r E L(/~, I~), 1~p < r ~ 00, be the natural identity.
Then we have

1, if k ~ log n,

entk(idp.r) ~
cog(n/: + 1) ) ]/P-I/r,

if log n ~ k ~ n,

2-klnnl/r-l/p, if k~n.

We require several lemmas. The first can be found in [5, Ex. 291.
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LEMMA 2. Let k, n E IN.

card{x E zn Illxll l ~ k} = ±2n- i
( ~ ) ( ~ .).

i=O I n I

The following lemma is contained in [6], and also, implicitly, in [2].
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LEMMA 3. Let {e;}i= I be a symmetric, normalized basis of E. Then we
have for the volume of the unit ball BE

Proof We have

By taking volumes and by using AE(n) Ap(n) = n we get

LEMMA 4. Let {e;}~ and {J;}~ be symmetric, normalized bases of E and
F, idE,F the natural identity. Then we have

e- 12- k/ n AF(n) ~ t ('d ) /' 2- k / n AF(n)
AE(n) "" en k 1 E.F "'::: C AE(n)

where c denotes an absolute constant.

for k >n,

Proof The left-hand inequality follows by considering the volumes of BE
and BF' Suppose we have

r

BE r::;;. U {Xi +oBp}.
i=l

It follows that vol(BE)I/n~rl/navol(BF)I/n.By Lemma 3 we get AE(n)-1 ~
erl/naAF(n) -I. The left-hand inequality follows.

The right-hand inequality for E = I~ and F = Ie:; follows from Lemma 2.
Since the result is already contained in [3] we don't want to go into further
details. The general case follows now from a factorization. Indeed, consider
the factorization idE,1 E L(E, I~), idl,oo E L(/~, Ie:;) and idoo,p E L(l;;:', F).

entk(idE,F) ~ entk(id1,oo) II idE,llll1 idooA

= Ap(n) Ap(n) entk(idl,oo)' I
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Proof of Theorem 1. Obviously, the case k ~ n is covered by Lemma 4.
We turn to the case k ~ log n. We have trivially entk(idp,r) ~ 1 since p < r.
On the other hand, since the unit vectors e1, •.• , en satisfy

for i =t- j,

we get

for k = 1,..., [log n J.

Now, we settle the case [log nJ ~ k ~ n. We do this first for p = 1 and
r = 00. By Lemma 2 we get, for k ~ n,

and

since

~n~'/2k(~)( ~.)=2k(n+k).
1=0 I n I k

It is left to pass to dyadic entropy numbers: We have for k ~ n that
log(2 k( ~)) ~ k log(njk + 1). Then we have to apply that the inverse function
of k log(njk + 1) is proportional to k log-I(njk + 1). The cases p =t- 1 and
r =t- 00 follow by interpolation. Indeed, by [4, p. 1731 we have

entk(idp,r) ~ 4 entk(id1,exY/P-l/r,

and by [4, p, 169J

THEOREM 5. Let {e;}?=I and {/;f?=l be symmetric, normalized bases of
E and F. Moreover, let id E L(E, F) be the natural identity. Then we have

1 AF(I) . 2 AAI)
2e l=T,~.~.n AE(l) ~ entk(ld) ~ clog (njk + 1) l=T,~~,n AE(I)

for k = 1,... , n,

and

(1)

for k~ n, (2)

where c denotes an absolute constant.



ENTROPY NUMBERS OF DIAGONAL OPERATORS 125

The following is a generalization of a lemma used by the author and N.
Tomczak-Jaegerman.

LEMMA 6. Let {e;}7= 1 be a symmetric, normalized basis ofE and bi >0,
i = 1,... , n. Then we have

for k = 1,... , n,

where c is some absolute constant.

Proof Without loss of generality we may assume that k = 2', n = 25
,

r, s E IN.
Then

for all I with r ~ I < s. Thus we get

for all I with r ~ I < s. Since there are only s - r = log n -log k = log n/k
numbers I the estimate follows. I

Proof of Theorem 5. (2) is nothing but Lemma 4. The left-hand
inequality of (1) follows from Lemma 4 and a factorization. Consider the
injection j/ E L(Ep E) and the projection p/ E L(F, F/), where E/ and F/
denote the span of the first I unit vectors. Thus p/ idj/ gives the identity id/
from E/ onto F/. Therefore

Thus, by Lemma 4,

1 AF(/) _ 1 _ kl/ AF(/) .
- max -,- ~ e /=m1.a..x..

n
2 'E(/) ~ entk(ld).2e /=k ..... n AE(l) A

Now we prove the right-hand inequality. There are (Z) different subspaces of
E that are spanned by exactly k unit vectors. For every subspace [e i ,,·'" eiJ
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there is a projection P;" .... ;k with P;, .....;/e;) = e; if i E {ii"'" id, the other
unit vectors are mapped onto O. Projection q i, •...• ; k is defined in the same
way for [/;, ,...,/;J

According to Lemma 4 we find 2k vectors x\;,·· .. ·ik), ... , X~;k'· .. ··;k) such that

where c is an absolute constant. Thus

2

k !. . A (k) !idp. . (B ) ~ U x~""""k) +c-F-B .
,'· .. ··'k E .' A (k) F

,=1 E

Now we claim that

(3)

By this we proved that

and it is left to pass to dyadic entropy numbers. This is done as in the proof
of Theorem 1 using also the triangle inequality. We prove now (4), suppose
that x E BE with x = LI= 1 a;e;. Without loss of generality we may assume
that al ~ a2 ~ ••• ~ an ~ O. With b; ~ 0, i = 1,... , n, properly chosen we may
write

n ;

X= L b;AAi)-1 L ej
;~I j=1

kin i

= L b;AE(i)-1 L ej + L biAE(i)-1 L ej •

;=1 j=1 i=k+l j=1

Clearly, the first summand is contained in PI .....k(BE ), or to put it in other
terms, according to (3) there is a vector x:· .. ·· k such that

o

k ;

'" b 1 (1,)-1 '" eE !xP.....k ) + cAF(k) B I
t:1 ;A

E
j7'1 j . '0 AE(k) F \.
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The second summand satisfies

~ • _I ~ AF(I)
i=7"+ 1 biAE(z) j7'l ej E c log(nlk + 1) kITJ~~n AAI) BF

because of Lemma 6. Thus (4) is obtained. I
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THEOREM 7. Let {ed7=1 and {J;}7=t be symmetric, normalized bases of
E and F. Suppose that AF(k) = ka:AE(k), -1 <a <1, and that lis>
maxi-a, O} and 0 < t <00. Then

where c > 0 is an absolute constant.

Proof The left-hand inequality is easily obtained. According to (1) we
have

for k = [n12 ],..., n.

From this the left-hand inequality follows immediately. Now we prove the
right-hand inequality. We consider two cases, first a ~ O. We get by
Theorem 5 for some c >0

By an elementary computation we get

In the other case, a <0, we get by Theorem 5

Again, by elementary computation the result follows. I

The following corollary is concerned with diagonal operators between
spaces with symmetric bases. So, assume that {ei}~l and {J;}~I are
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symmetric bases of Banach spaces E and F. Then D E L(E, F) is called a
diagonal operator if D(e;) = d;i;, i E IN, with d; E IR.

COROLLARY 8. Let {e;}r=:1 and {/;Ir=:1 be symmetric, normalized bases
of E and F. Suppose that AAk) = kUAE(k), -I <a <I, Ijr> max{a, 01,
o< t <00, and lis = Ilr - a. Then

D E Y'~~)(E, F) if and only if (dJr=: I E 1'.1.

This corollary follows from Theorem 7 and the proof of Theorem 2 in [I].
We also use that AE(n) Ap(n) = n.
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